Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78.114
Filtrar
1.
Sci Rep ; 14(1): 8401, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600172

RESUMEN

REV-ERBα, a therapeutically promising nuclear hormone receptor, plays a crucial role in regulating various physiological processes such as the circadian clock, inflammation, and metabolism. However, the availability of chemical probes to investigate the pharmacology of this receptor is limited, with SR8278 being the only identified synthetic antagonist. Moreover, no X-ray crystal structures are currently available that demonstrate the binding of REV-ERBα to antagonist ligands. This lack of structural information impedes the development of targeted therapeutics. To address this issue, we employed Gaussian accelerated molecular dynamics (GaMD) simulations to investigate the binding pathway of SR8278 to REV-ERBα. For comparison, we also used GaMD to observe the ligand binding process of STL1267, for which an X-ray structure is available. GaMD simulations successfully captured the binding of both ligands to the receptor's orthosteric site and predicted the ligand binding pathway and important amino acid residues involved in the antagonist SR8278 binding. This study highlights the effectiveness of GaMD in investigating protein-ligand interactions, particularly in the context of drug recognition for nuclear hormone receptors.


Asunto(s)
Isoquinolinas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Ligandos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Isoquinolinas/química , Tiofenos/química , Ritmo Circadiano/fisiología
3.
Nat Commun ; 15(1): 3523, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664421

RESUMEN

Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.


Asunto(s)
Relojes Circadianos , Proteínas Fúngicas , Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Unión Proteica , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/química , Mutación , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Análisis por Matrices de Proteínas
4.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664694

RESUMEN

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Asunto(s)
Camellia sinensis , Ritmo Circadiano , Fotosíntesis , Fotosíntesis/genética , Camellia sinensis/genética , Camellia sinensis/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Familia de Multigenes , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Fotoperiodo
5.
Cell Rep ; 43(4): 114079, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613781

RESUMEN

Chronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal , Triptófano , Triptófano/metabolismo , Animales , Ritmo Circadiano/fisiología , Microbioma Gastrointestinal/fisiología , Ratones , Masculino , Ratones Endogámicos C57BL , Estrés Fisiológico
6.
Nat Commun ; 15(1): 3336, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637528

RESUMEN

To understand aging impact on the circadian rhythm, we screened for factors influencing circadian changes during aging. Our findings reveal that LKRSDH mutation significantly reduces rhythmicity in aged flies. RNA-seq identifies a significant increase in insulin-like peptides (dilps) in LKRSDH mutants due to the combined effects of H3R17me2 and H3K27me3 on transcription. Genetic evidence suggests that LKRSDH regulates age-related circadian rhythm changes through art4 and dilps. ChIP-seq analyzes whole genome changes in H3R17me2 and H3K27me3 histone modifications in young and old flies with LKRSDH mutation and controls. The results reveal a correlation between H3R17me2 and H3K27me3, underscoring the role of LKRSDH in regulating gene expression and modification levels during aging. Overall, our study demonstrates that LKRSDH-dependent histone modifications at dilps sites contribute to age-related circadian rhythm changes. This data offers insights and a foundational reference for aging research by unveiling the relationship between LKRSDH and H3R17me2/H3K27me3 histone modifications in aging.


Asunto(s)
Código de Histonas , Histonas , Histonas/genética , Histonas/metabolismo , Ritmo Circadiano/genética , Genoma
7.
Nat Commun ; 15(1): 2834, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565846

RESUMEN

The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Ritmo Circadiano/fisiología , Temperatura , Sueño/fisiología , Drosophila , Relojes Circadianos/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología
8.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568969

RESUMEN

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , ADN/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , ARN/metabolismo
9.
Ann Med ; 56(1): 2331054, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38635448

RESUMEN

BACKGROUND: Cognitive function, including moral decision-making abilities, can be impaired by sleep loss. Blue-enriched light interventions have been shown to ameliorate cognitive impairment during night work. This study investigated whether the quality of moral decision-making during simulated night work differed for night work in blue-enriched white light, compared to warm white light. METHODS: Using a counterbalanced crossover design, three consecutive night shifts were performed in blue-enriched white light (7000 K) and warm white light (2500 K) provided by ceiling-mounted LED luminaires (photopic illuminance: ∼200 lx). At 03:30 h on the second shift (i.e. twice) and at daytime (rested), the Defining Issues Test-2, assessing the activation of cognitive schemas depicting different levels of cognitive moral development, was administered. Data from 30 (10 males, average age 23.3 ± 2.9 years) participants were analysed using linear mixed-effects models. RESULTS: Activation of the post-conventional schema (P-score), that is, the most mature moral level, was significantly lower for night work in warm white light (EMM; estimated marginal mean = 44.3, 95% CI = 38.9-49.6; pholm=.007), but not blue-enriched white light (EMM = 47.5, 95% CI = 42.2-52.8), compared to daytime (EMM = 51.2, 95% CI = 45.9-56.5). Also, the P-score was reduced for night work overall (EMM = 45.9, 95% CI = 41.1-50.8; p=.008), that is, irrespective of light condition, compared to daytime. Neither activation of the maintaining norms schema (MN-score), that is, moderately developed moral level, nor activation of the personal interest schema (i.e. the lowest moral level) differed significantly between light conditions. The MN-score was however increased for night work overall (EMM = 26.8, 95% CI = 23.1-30.5; p=.033) compared to daytime (EMM = 23.1, 95% CI = 18.9-27.2). CONCLUSION: The results indicate that moral decisions during simulated night work in warm white light, but not blue-enriched white light, become less mature and principle-oriented, and more rule-based compared to daytime, hence blue-enriched white light may function as a moderator. Further studies are needed, and the findings should be tentatively considered.Trial registration: ClinicalTrials.gov (ID: NCT03203538) Registered: 26/06/2017; https://clinicaltrials.gov/study/NCT03203538.


The quality of moral decision-making, seen as the activation of cognitive schemas depicting different levels of moral development, was reduced during simulated night work in warm white light, but not blue-enriched light, compared to daytime.The quality of moral decision-making sems to be reduced during simulated night work, compared to daytime.More studies assessing the impact of night work and light interventions on the quality of moral decision-making are needed to validate these tentative findings.


Asunto(s)
Ritmo Circadiano , Sueño , Masculino , Humanos , Adulto Joven , Adulto , Sueño/fisiología , Estudios Cruzados , Ritmo Circadiano/fisiología , Cognición , Principios Morales , Tolerancia al Trabajo Programado/fisiología
10.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558122

RESUMEN

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Asunto(s)
Melatonina , Glándula Pineal , Animales , Glándula Pineal/metabolismo , Genes Homeobox , Melatonina/metabolismo , Roedores/genética , Roedores/metabolismo , Factores de Transcripción/metabolismo , Ritmo Circadiano
11.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38558188

RESUMEN

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Asunto(s)
Médula Ósea , Relojes Circadianos , Ratones , Animales , Médula Ósea/metabolismo , Fotoperiodo , Ritmo Circadiano/fisiología , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Relojes Circadianos/genética
12.
Sci Rep ; 14(1): 7760, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565934

RESUMEN

Disrupted or atypical light-dark cycles disrupts synchronization of endogenous circadian clocks to the external environment; extensive circadian rhythm desynchrony promotes adverse health outcomes. Previous studies suggest that disrupted circadian rhythms promote neuroinflammation and neuronal damage post-ischemia in otherwise healthy mice, however, few studies to date have evaluated these health risks with aging. Because most strokes occur in aged individuals, we sought to identify whether, in addition to being a risk factor for poor ischemic outcome, circadian rhythm disruption can increase risk for vascular cognitive impairment and dementia (VCID). We hypothesized that repeated 6 h phase advances (chronic jet lag; CJL) for 8 weeks alters cerebrovascular architecture leading to increased cognitive impairments in aged mice. Female CJL mice displayed impaired spatial processing during a spontaneous alternation task and reduced acquisition during auditory-cued associative learning. Male CJL mice displayed impaired retention of the auditory-cued associative learning task 24 h following acquisition. CJL increased vascular tortuosity in the isocortex, associated with increased risk for vascular disease. These results demonstrate that CJL increased sex-specific cognitive impairments coinciding with structural changes to vasculature in the brain. We highlight that CJL may accelerate aged-related functional decline and could be a crucial target against disease progression.


Asunto(s)
Ritmo Circadiano , Demencia Vascular , Animales , Ratones , Masculino , Femenino , Ritmo Circadiano/fisiología , Fotoperiodo , Reconocimiento en Psicología , Demencia Vascular/etiología , Cognición
13.
Sci Rep ; 14(1): 7778, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565587

RESUMEN

Laboratory animals are typically maintained under 12-h light and 12-h dark (12:12 LD) conditions with a daytime light intensity of ~ 200 lx. In this study, we designed an apparatus that allowed mice to self-select the room light intensity by nose poking. We measured the behavioral rhythms of the mice under this self-controlled light regimen. The mice quickly learned the relationship between their nose pokes and the resulting changes in the light intensity. Under these conditions, the mice exhibited free-running circadian behavior with a period of 24.5 ± 0.4 h. This circadian period was ~ 1 h longer than that of the same strain of mice when they were kept in constant darkness (DD) after 12:12 LD entrainment, and the lengthened period lasted for at least 30 days. The rhythm of the light intensity controlled by the mice also exhibited a similar period, but the phase of the illuminance rhythm preceded the phase of the locomotor activity rhythm. Mice that did not have access to the light controller were also entrained to the illuminance cycle produced by the mice that did have access to the light controller, but with a slightly delayed phase. The rhythm was likely controlled by the canonical circadian clock because mice with tau mutations in the circadian clock gene CSNK1E exhibited short periods of circadian rhythm under the same conditions. These results indicate that the free-running period of mice in the wild may differ from what they exhibit if they are attuned by forced light cycles in laboratories because mice in their natural habitats can self-control their exposure to ambient light, similar to our experimental conditions.


Asunto(s)
Ritmo Circadiano , Actividad Motora , Ratones , Animales , Luz , Fotoperiodo , Oscuridad
14.
Sci Adv ; 10(17): eadm9281, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657074

RESUMEN

Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-ß, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.


Asunto(s)
Ritmo Circadiano , Hepatocitos , Inflamación , Hígado , Humanos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Inflamación/metabolismo , Hígado/metabolismo , Acetaminofén/farmacología , Atorvastatina/farmacología , Citocinas/metabolismo , Inactivación Metabólica , Lipopolisacáridos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Cultivadas
15.
Chronobiol Int ; 41(4): 548-560, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557404

RESUMEN

Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.


Asunto(s)
Ritmo Circadiano , Dieta Alta en Grasa , Microbioma Gastrointestinal , Melatonina , Ratones Endogámicos C57BL , Animales , Melatonina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ritmo Circadiano/fisiología , Ratones , Citocinas/metabolismo , Fotoperiodo , Inflamación
16.
Chronobiol Int ; 41(4): 561-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557262

RESUMEN

Circadian typology, or "morningness" and "eveningness," is generally assessed using the Morningness-Eveningness Questionnaire (MEQ), a 19-item scale that could be burdensome in large-scale surveys. To overcome this, a 5-item version known as the reduced morningness-eveningness questionnaire (rMEQ), which is sensitive to the assessment of circadian typology, was developed; however, a validated Japanese version of the rMEQ is yet to be established. This study aimed to develop and validate the Japanese version of the rMEQ. Five essential items for the rMEQ were selected from existing Japanese MEQ data (N = 2,213), and the rMEQ was compiled. We conducted a confirmatory factor analysis for the psychometric properties of the rMEQ and confirmed its robust one-factor structure for evaluating morningness-eveningness (GFI = 0.984, AGFI = 0.951, CFI = 0.935, and RMSEA = 0.091). Reliability was evaluated via internal consistency of rMEQ items using Cronbach's α and McDonald's ω, and the values were 0.618 and 0.654, respectively. The rMEQ scores strongly correlated with MEQ (ρ = 0.883, p < 0.001), and classification agreement (Morning, Neither, and Evening types) between rMEQ and MEQ was 77.6% (Cramer's V = 0.643, Weighted Cohen's κ = 0.72), confirming the validity. The Japanese rMEQ may be a valuable tool for the efficient assessment of circadian typologies.


Asunto(s)
Ritmo Circadiano , Psicometría , Humanos , Ritmo Circadiano/fisiología , Encuestas y Cuestionarios , Masculino , Femenino , Adulto , Reproducibilidad de los Resultados , Japón , Adulto Joven , Persona de Mediana Edad , Sueño/fisiología , Análisis Factorial , Pueblos del Este de Asia
17.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625943

RESUMEN

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Asunto(s)
Ritmo Circadiano , Proteínas Circadianas Period , Animales , Ritmo Circadiano/fisiología , Temperatura , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , ARN/metabolismo , Núcleo Supraquiasmático/metabolismo , Mamíferos/genética
18.
Chronobiol Int ; 41(4): 567-576, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602470

RESUMEN

Sleep and light education (SLE) combined with relaxation is a potential method of addressing sleep and affective problems in older people. 47 participants took part in a four-week sleep education program. SLE was conducted once a week for 60-90 minutes. Participants were instructed on sleep and light hygiene, sleep processes, and practiced relaxation techniques. Participants were wearing actigraphs for 6 weeks, completed daily sleep diaries, and wore blue light-blocking glasses 120 minutes before bedtime. Measures included scores of the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Insomnia Severity Index (ISS), Beck Depression Inventory-II (BDI-II), State-Trait Anxiety Inventory (STAI) and actigraphy measurements of sleep latency, sleep efficiency, and sleep fragmentation. Sleep quality increased after SLE based on the subjective assessment and in the objective measurement with actigraphy. PSQI scores were statistically reduced indicating better sleep. Scores after the intervention significantly decreased in ESS and ISS. Sleep latency significantly decreased, whereas sleep efficiency and fragmentation index (%), did not improve. Mood significantly improved after SLE, with lower scores on the BDI-II and STAI. SLE combined with relaxation proved to be an effective method to reduce sleep problems and the incidence of depressive and anxiety symptoms.


Asunto(s)
Afecto , Sueño , Humanos , Masculino , Femenino , Anciano , Afecto/fisiología , Sueño/fisiología , Actigrafía , Terapia por Relajación/métodos , Persona de Mediana Edad , Ritmo Circadiano/fisiología , Calidad del Sueño , Luz , Relajación/fisiología , Anciano de 80 o más Años , Depresión , Ansiedad
19.
PLoS Biol ; 22(4): e3002572, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603542

RESUMEN

The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Humanos , Animales , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Relojes Circadianos/genética , Actividad Motora , Drosophila melanogaster/metabolismo
20.
Chronobiol Int ; 41(4): 587-597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606920

RESUMEN

The timing of radiotherapy (RT) delivery has been reported to affect both cancer survival and treatment toxicity. However, the association among the timing of RT delivery, survival, and toxicity in locally advanced nasopharyngeal carcinoma (LA-NPC) has not been investigated. We retrospectively reviewed patients diagnosed with LA-NPC who received definitive RT at multiple institutions. The median RT delivery daytime was categorized as morning (DAY) and night (NIGHT). Seasonal variations were classified into the darker half of the year (WINTER) and brighter half (SUMMER) according to the sunshine duration. Cohorts were balanced according to baseline characteristics using propensity score matching (PSM). Survival and toxicity outcomes were evaluated using Cox regression models. A total of 355 patients were included, with 194/161 in DAY/NIGHT and 187/168 in WINTER/SUMMER groups. RT delivered during the daytime prolonged the 5-year overall survival (OS) (90.6% vs. 80.0%, p = 0.009). However, the significance of the trend was lost after PSM (p = 0.068). After PSM analysis, the DAY cohort derived a greater benefit in 5-year progression-free survival (PFS) (85.6% vs. 73.4%, p = 0.021) and distant metastasis-free survival (DMFS) (89.2% vs. 80.8%, p = 0.051) in comparison with the NIGHT subgroup. Moreover, multivariate analysis showed that daytime RT was an independent prognostic factor for OS, PFS, and DMFS. Furthermore, daytime RT delivery was associated with an increase in the incidence of leukopenia and radiation dermatitis. RT delivery in SUMMER influenced only the OS significantly (before PSM: p = 0.051; after PSM: p = 0.034). There was no association between toxicity and the timing of RT delivery by season. In LA-NPC, the daytime of radical RT served as an independent prognostic factor. Furthermore, RT administered in the morning resulted in more severe toxic side effects than that at night, which needs to be confirmed in a future study.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Puntaje de Propensión , Humanos , Masculino , Femenino , Carcinoma Nasofaríngeo/radioterapia , Persona de Mediana Edad , Neoplasias Nasofaríngeas/radioterapia , Estudios Retrospectivos , Pronóstico , Adulto , Anciano , Resultado del Tratamiento , Ritmo Circadiano/fisiología , Factores de Tiempo , Radioterapia/efectos adversos , Radioterapia/métodos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA